Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (69982 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1000 entries)
Binder Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (45451 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (770 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1516 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (577 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (11564 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (981 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (622 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (299 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (472 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (482 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (843 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1156 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4086 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (163 entries)

C (binder)

cadd:298 [in Coq.setoid_ring.Ring_theory]
carry:5 [in Coq.Bool.Bvector]
carry:8 [in Coq.Bool.Bvector]
caserec:17 [in Coq.Numbers.Cyclic.Int31.Int31]
caserec:25 [in Coq.Numbers.Cyclic.Int31.Int31]
caserec:55 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
case0:16 [in Coq.Numbers.Cyclic.Int31.Int31]
case0:24 [in Coq.Numbers.Cyclic.Int31.Int31]
case0:54 [in Coq.Numbers.Cyclic.Int31.Cyclic31]
cau:139 [in Coq.Reals.Abstract.ConstructiveSum]
cau:144 [in Coq.Reals.Abstract.ConstructiveSum]
cd:610 [in Coq.ssr.ssrbool]
ceqb:302 [in Coq.setoid_ring.Ring_theory]
certif:30 [in Coq.nsatz.NsatzTactic]
certif:60 [in Coq.nsatz.NsatzTactic]
choose_exponent:16 [in Coq.QArith.QArith_base]
ch:1 [in Coq.Strings.OctalString]
ch:1 [in Coq.Strings.HexString]
ch:1 [in Coq.Strings.BinaryString]
cI:297 [in Coq.setoid_ring.Ring_theory]
cl':533 [in Coq.micromega.Tauto]
cl1:131 [in Coq.micromega.Tauto]
cl1:201 [in Coq.micromega.Tauto]
cl2:132 [in Coq.micromega.Tauto]
cl2:202 [in Coq.micromega.Tauto]
cl:117 [in Coq.micromega.RMicromega]
cl:128 [in Coq.micromega.Tauto]
cl:186 [in Coq.micromega.ZMicromega]
cl:198 [in Coq.micromega.Tauto]
cl:420 [in Coq.micromega.ZMicromega]
cl:427 [in Coq.micromega.Tauto]
cl:430 [in Coq.micromega.Tauto]
cl:513 [in Coq.micromega.Tauto]
cl:525 [in Coq.micromega.Tauto]
cl:529 [in Coq.micromega.Tauto]
cl:532 [in Coq.micromega.Tauto]
cl:81 [in Coq.micromega.QMicromega]
cmp:134 [in Coq.FSets.FMapFullAVL]
cmp:1385 [in Coq.FSets.FMapAVL]
cmp:1460 [in Coq.FSets.FMapAVL]
cmp:1461 [in Coq.FSets.FMapAVL]
cmp:1466 [in Coq.FSets.FMapAVL]
cmp:1469 [in Coq.FSets.FMapAVL]
cmp:16 [in Coq.Structures.GenericMinMax]
cmp:2 [in Coq.FSets.FMapInterface]
cmp:20 [in Coq.Structures.GenericMinMax]
cmp:209 [in Coq.FSets.FMapFullAVL]
cmp:210 [in Coq.FSets.FMapFullAVL]
cmp:215 [in Coq.FSets.FMapFullAVL]
cmp:216 [in Coq.FSets.FMapFacts]
cmp:218 [in Coq.FSets.FMapFullAVL]
cmp:226 [in Coq.FSets.FMapFacts]
cmp:283 [in Coq.FSets.FMapWeakList]
cmp:286 [in Coq.FSets.FMapPositive]
cmp:287 [in Coq.FSets.FMapWeakList]
cmp:291 [in Coq.FSets.FMapList]
cmp:293 [in Coq.FSets.FMapWeakList]
cmp:297 [in Coq.FSets.FMapList]
cmp:298 [in Coq.FSets.FMapWeakList]
cmp:300 [in Coq.FSets.FMapList]
cmp:304 [in Coq.FSets.FMapList]
cmp:305 [in Coq.FSets.FMapWeakList]
cmp:307 [in Coq.FSets.FMapPositive]
cmp:309 [in Coq.FSets.FMapList]
cmp:311 [in Coq.FSets.FMapPositive]
cmp:315 [in Coq.FSets.FMapPositive]
cmp:316 [in Coq.FSets.FMapWeakList]
cmp:321 [in Coq.FSets.FMapWeakList]
cmp:326 [in Coq.FSets.FMapWeakList]
cmp:331 [in Coq.FSets.FMapWeakList]
cmp:351 [in Coq.FSets.FMapList]
cmp:362 [in Coq.FSets.FMapList]
cmp:367 [in Coq.FSets.FMapList]
cmp:368 [in Coq.FSets.FMapList]
cmp:39 [in Coq.FSets.FMapFacts]
cmp:518 [in Coq.FSets.FMapWeakList]
cmp:537 [in Coq.FSets.FMapWeakList]
cmp:538 [in Coq.FSets.FMapList]
cmp:557 [in Coq.FSets.FMapList]
cmp:597 [in Coq.FSets.FMapWeakList]
cmp:600 [in Coq.FSets.FMapWeakList]
cmp:618 [in Coq.FSets.FMapList]
cmp:621 [in Coq.FSets.FMapList]
cmp:76 [in Coq.FSets.FMapInterface]
cmul:299 [in Coq.setoid_ring.Ring_theory]
cM1:161 [in Coq.setoid_ring.Ring_polynom]
cM1:169 [in Coq.setoid_ring.Ring_polynom]
cM1:175 [in Coq.setoid_ring.Ring_polynom]
cM1:286 [in Coq.setoid_ring.Ring_polynom]
cM1:292 [in Coq.setoid_ring.Ring_polynom]
cM1:297 [in Coq.setoid_ring.Ring_polynom]
cm:113 [in Coq.micromega.RMicromega]
cm:179 [in Coq.micromega.RingMicromega]
cm:181 [in Coq.micromega.RingMicromega]
cM:279 [in Coq.setoid_ring.Ring_polynom]
cm:72 [in Coq.micromega.QMicromega]
cm:78 [in Coq.micromega.ZMicromega]
Cn:36 [in Coq.Reals.PartSum]
condition:111 [in Coq.ssr.ssrbool]
condition:121 [in Coq.ssr.ssreflect]
cont:102 [in Coq.FSets.FMapAVL]
cont:106 [in Coq.FSets.FMapAVL]
cont:1254 [in Coq.FSets.FMapAVL]
cont:1261 [in Coq.FSets.FMapAVL]
cont:1511 [in Coq.FSets.FMapAVL]
cont:1515 [in Coq.FSets.FMapAVL]
cont:1537 [in Coq.FSets.FMapAVL]
cont:1544 [in Coq.FSets.FMapAVL]
cont:358 [in Coq.MSets.MSetGenTree]
cont:364 [in Coq.MSets.MSetGenTree]
cont:54 [in Coq.MSets.MSetGenTree]
cont:58 [in Coq.MSets.MSetGenTree]
copp:301 [in Coq.setoid_ring.Ring_theory]
cO:296 [in Coq.setoid_ring.Ring_theory]
Cr:161 [in Coq.setoid_ring.Ncring]
csub:300 [in Coq.setoid_ring.Ring_theory]
cv:121 [in Coq.Reals.PSeries_reg]
cv:130 [in Coq.Reals.PSeries_reg]
cv:65 [in Coq.Reals.PSeries_reg]
cv:72 [in Coq.Reals.PSeries_reg]
c':114 [in Coq.Init.Datatypes]
c':119 [in Coq.Init.Datatypes]
c':121 [in Coq.Init.Datatypes]
c':173 [in Coq.setoid_ring.Ring_theory]
c':222 [in Coq.setoid_ring.Ring_polynom]
c':225 [in Coq.micromega.EnvRing]
c':252 [in Coq.PArith.BinPos]
c':36 [in Coq.setoid_ring.Field_theory]
c0:339 [in Coq.Numbers.Natural.Abstract.NBits]
c0:342 [in Coq.Numbers.Natural.Abstract.NBits]
c0:345 [in Coq.Numbers.Natural.Abstract.NBits]
c0:403 [in Coq.Numbers.Integer.Abstract.ZBits]
c0:406 [in Coq.Numbers.Integer.Abstract.ZBits]
c0:410 [in Coq.Numbers.Integer.Abstract.ZBits]
c0:414 [in Coq.Numbers.Integer.Abstract.ZBits]
C0:510 [in Coq.Reals.RiemannInt]
C0:517 [in Coq.Reals.RiemannInt]
C0:531 [in Coq.Reals.RiemannInt]
c1:106 [in Coq.omega.OmegaLemmas]
c1:115 [in Coq.omega.OmegaLemmas]
c1:129 [in Coq.omega.OmegaLemmas]
c1:20 [in Coq.Reals.PSeries_reg]
c1:209 [in Coq.micromega.ZMicromega]
c1:22 [in Coq.Sets.Finite_sets_facts]
c1:321 [in Coq.MSets.MSetGenTree]
c1:330 [in Coq.MSets.MSetGenTree]
c1:34 [in Coq.Sets.Finite_sets_facts]
c1:38 [in Coq.ZArith.Zcompare]
c1:406 [in Coq.setoid_ring.Field_theory]
c1:409 [in Coq.setoid_ring.Field_theory]
c1:42 [in Coq.omega.OmegaLemmas]
c1:43 [in Coq.ZArith.Zcompare]
c1:49 [in Coq.omega.OmegaLemmas]
c1:51 [in Coq.Logic.ClassicalFacts]
c1:55 [in Coq.Logic.ClassicalFacts]
c1:66 [in Coq.Logic.ClassicalFacts]
c1:67 [in Coq.omega.OmegaLemmas]
c1:69 [in Coq.Logic.ClassicalFacts]
c1:72 [in Coq.Logic.ClassicalFacts]
c1:76 [in Coq.Logic.ClassicalFacts]
c1:79 [in Coq.Logic.ClassicalFacts]
c1:85 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
c1:86 [in Coq.Logic.ClassicalFacts]
c1:89 [in Coq.Logic.ClassicalFacts]
c1:90 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
c2:107 [in Coq.omega.OmegaLemmas]
c2:122 [in Coq.omega.OmegaLemmas]
c2:130 [in Coq.omega.OmegaLemmas]
c2:21 [in Coq.Reals.PSeries_reg]
c2:211 [in Coq.micromega.ZMicromega]
c2:24 [in Coq.Sets.Finite_sets_facts]
c2:36 [in Coq.Sets.Finite_sets_facts]
c2:39 [in Coq.ZArith.Zcompare]
c2:407 [in Coq.setoid_ring.Field_theory]
c2:410 [in Coq.setoid_ring.Field_theory]
c2:43 [in Coq.omega.OmegaLemmas]
c2:44 [in Coq.ZArith.Zcompare]
c2:52 [in Coq.Logic.ClassicalFacts]
c2:54 [in Coq.omega.OmegaLemmas]
c2:56 [in Coq.Logic.ClassicalFacts]
c2:67 [in Coq.Logic.ClassicalFacts]
c2:68 [in Coq.omega.OmegaLemmas]
c2:70 [in Coq.Logic.ClassicalFacts]
c2:73 [in Coq.Logic.ClassicalFacts]
c2:77 [in Coq.Logic.ClassicalFacts]
c2:80 [in Coq.Logic.ClassicalFacts]
c2:86 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
c2:87 [in Coq.Logic.ClassicalFacts]
c2:90 [in Coq.Logic.ClassicalFacts]
c2:91 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
c3:40 [in Coq.ZArith.Zcompare]
c3:45 [in Coq.ZArith.Zcompare]
C:1 [in Coq.micromega.EnvRing]
c:1 [in Coq.ZArith.Zwf]
c:1 [in Coq.micromega.ZifyComparison]
C:1 [in Coq.setoid_ring.Ncring_polynom]
c:10 [in Coq.ssr.ssrbool]
c:10 [in Coq.Reals.Machin]
c:10 [in Coq.ZArith.Zwf]
C:10 [in Coq.Sets.Powerset_facts]
c:100 [in Coq.ZArith.Zquot]
c:101 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:101 [in Coq.Numbers.NatInt.NZDiv]
c:101 [in Coq.NArith.Ndec]
c:102 [in Coq.setoid_ring.Ncring_polynom]
C:102 [in Coq.Logic.ClassicalFacts]
c:103 [in Coq.setoid_ring.Field_theory]
c:103 [in Coq.ZArith.Zquot]
c:104 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:104 [in Coq.Numbers.NatInt.NZDiv]
c:104 [in Coq.NArith.Ndec]
c:105 [in Coq.Reals.NewtonInt]
c:105 [in Coq.setoid_ring.Ncring_polynom]
C:106 [in Coq.Logic.ClassicalFacts]
c:107 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:107 [in Coq.setoid_ring.Field_theory]
c:108 [in Coq.ZArith.Znumtheory]
c:11 [in Coq.Reals.MVT]
c:11 [in Coq.ZArith.Zpow_facts]
c:110 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:110 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:111 [in Coq.Reals.NewtonInt]
c:112 [in Coq.Arith.PeanoNat]
c:113 [in Coq.Numbers.Natural.Abstract.NDiv]
c:113 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:113 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:113 [in Coq.Init.Datatypes]
C:113 [in Coq.Logic.ClassicalFacts]
C:114 [in Coq.ssr.ssrbool]
c:116 [in Coq.Numbers.Natural.Abstract.NDiv]
C:116 [in Coq.ssr.ssrbool]
c:116 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
C:116 [in Coq.Init.Logic]
c:117 [in Coq.Init.Datatypes]
C:118 [in Coq.ssr.ssrbool]
c:118 [in Coq.Init.Datatypes]
c:118 [in Coq.ZArith.Znumtheory]
c:119 [in Coq.Numbers.Natural.Abstract.NDiv]
c:119 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:12 [in Coq.Reals.R_Ifp]
c:12 [in Coq.Numbers.Natural.Abstract.NPow]
c:12 [in Coq.Reals.MVT]
c:12 [in Coq.ssr.ssrbool]
c:12 [in Coq.Reals.PSeries_reg]
C:120 [in Coq.ssr.ssrbool]
c:120 [in Coq.ZArith.Zdiv]
c:120 [in Coq.MSets.MSetGenTree]
c:120 [in Coq.Init.Datatypes]
c:121 [in Coq.ZArith.Znumtheory]
c:122 [in Coq.Numbers.Natural.Abstract.NDiv]
C:122 [in Coq.ssr.ssrbool]
c:122 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:122 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:123 [in Coq.ZArith.Zdiv]
c:124 [in Coq.Reals.Cauchy.ConstructiveRcomplete]
c:124 [in Coq.ZArith.Znumtheory]
c:125 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:125 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
C:126 [in Coq.Vectors.VectorSpec]
C:126 [in Coq.ssr.ssrbool]
c:126 [in Coq.ZArith.Zdiv]
c:126 [in Coq.ZArith.Zquot]
C:127 [in Coq.Classes.CMorphisms]
c:127 [in Coq.Numbers.NatInt.NZDiv]
c:128 [in Coq.setoid_ring.Ring_polynom]
c:128 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:128 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:129 [in Coq.ZArith.Zquot]
c:13 [in Coq.ssr.ssrbool]
c:13 [in Coq.Numbers.NatInt.NZLog]
c:13 [in Coq.Reals.Rtopology]
c:130 [in Coq.Numbers.NatInt.NZDiv]
c:131 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:131 [in Coq.Reals.Rbasic_fun]
c:131 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:132 [in Coq.ZArith.Zquot]
c:133 [in Coq.Numbers.NatInt.NZDiv]
c:133 [in Coq.Reals.Cauchy.ConstructiveCauchyReals]
c:134 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:134 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:135 [in Coq.Init.Datatypes]
c:136 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:136 [in Coq.Numbers.Natural.Abstract.NBits]
c:136 [in Coq.Numbers.NatInt.NZDiv]
c:137 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:137 [in Coq.Logic.Hurkens]
c:137 [in Coq.omega.OmegaLemmas]
c:137 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:139 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:14 [in Coq.Numbers.NatInt.NZSqrt]
c:140 [in Coq.setoid_ring.Ring_polynom]
c:140 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:140 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:143 [in Coq.Numbers.Natural.Abstract.NBits]
c:143 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
C:143 [in Coq.Logic.ClassicalFacts]
c:144 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:144 [in Coq.Reals.PSeries_reg]
c:145 [in Coq.Reals.MVT]
c:146 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
C:147 [in Coq.Logic.ClassicalFacts]
c:149 [in Coq.ZArith.Zdiv]
c:149 [in Coq.MSets.MSetGenTree]
c:15 [in Coq.Wellfounded.Inverse_Image]
c:15 [in Coq.Numbers.Natural.Abstract.NPow]
c:15 [in Coq.Reals.MVT]
C:15 [in Coq.Logic.JMeq]
c:15 [in Coq.ssr.ssrbool]
C:15 [in Coq.Bool.DecBool]
c:150 [in Coq.micromega.Tauto]
c:151 [in Coq.Init.Datatypes]
c:151 [in Coq.Reals.PSeries_reg]
C:151 [in Coq.setoid_ring.Ncring]
c:152 [in Coq.Reals.MVT]
c:152 [in Coq.ZArith.Zdiv]
c:152 [in Coq.micromega.Tauto]
c:1523 [in Coq.FSets.FMapAVL]
c:1527 [in Coq.FSets.FMapAVL]
c:153 [in Coq.Reals.MVT]
c:154 [in Coq.Reals.MVT]
C:154 [in Coq.Logic.ClassicalFacts]
c:155 [in Coq.Numbers.Natural.Abstract.NBits]
c:155 [in Coq.ZArith.Zdiv]
C:156 [in Coq.Vectors.VectorSpec]
c:158 [in Coq.ZArith.Zdiv]
c:158 [in Coq.Reals.PSeries_reg]
c:159 [in Coq.Reals.Rtopology]
c:16 [in Coq.Reals.Rtrigo_facts]
C:16 [in Coq.Sets.Ensembles]
c:16 [in Coq.Reals.MVT]
C:16 [in Coq.Numbers.NaryFunctions]
c:16 [in Coq.btauto.Algebra]
C:16 [in Coq.Program.Combinators]
C:16 [in Coq.Program.Basics]
c:162 [in Coq.micromega.RingMicromega]
c:162 [in Coq.Numbers.Natural.Abstract.NBits]
c:162 [in Coq.Reals.Rtopology]
c:163 [in Coq.setoid_ring.Ring_polynom]
c:163 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:165 [in Coq.Numbers.Natural.Abstract.NBits]
c:165 [in Coq.Reals.Rtopology]
c:166 [in Coq.micromega.RingMicromega]
c:166 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:168 [in Coq.Numbers.Natural.Abstract.NBits]
c:169 [in Coq.Vectors.VectorSpec]
c:17 [in Coq.Reals.MVT]
c:17 [in Coq.ssr.ssrbool]
c:17 [in Coq.Reals.Rtopology]
c:171 [in Coq.Numbers.Natural.Abstract.NBits]
c:171 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:172 [in Coq.Reals.Rpower]
c:172 [in Coq.setoid_ring.Ring_theory]
c:173 [in Coq.ZArith.Znumtheory]
c:174 [in Coq.Numbers.Natural.Abstract.NBits]
c:174 [in Coq.Numbers.Integer.Abstract.ZBits]
c:174 [in Coq.Reals.RiemannInt_SF]
c:174 [in Coq.QArith.QArith_base]
c:175 [in Coq.Reals.Rpower]
c:175 [in Coq.setoid_ring.Ring_theory]
c:177 [in Coq.Reals.MVT]
c:177 [in Coq.QArith.QArith_base]
c:178 [in Coq.ZArith.Znumtheory]
c:18 [in Coq.Reals.MVT]
C:18 [in Coq.Logic.ClassicalUniqueChoice]
c:18 [in Coq.Reals.PSeries_reg]
C:180 [in Coq.Classes.Morphisms]
c:180 [in Coq.Reals.Rtopology]
c:181 [in Coq.Reals.Rtopology]
c:181 [in Coq.Numbers.Integer.Abstract.ZBits]
c:181 [in Coq.ZArith.Znumtheory]
c:187 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:188 [in Coq.ZArith.BinInt]
c:19 [in Coq.micromega.Ztac]
c:19 [in Coq.Reals.Rtrigo_facts]
c:19 [in Coq.Reals.MVT]
c:19 [in Coq.ZArith.Zpow_facts]
c:19 [in Coq.ssr.ssrbool]
C:19 [in Coq.Classes.CMorphisms]
C:19 [in Coq.Program.Combinators]
c:190 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:191 [in Coq.NArith.BinNat]
C:191 [in Coq.Logic.ClassicalFacts]
c:193 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:193 [in Coq.Numbers.Integer.Abstract.ZBits]
c:195 [in Coq.Reals.MVT]
c:196 [in Coq.Reals.MVT]
c:196 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:196 [in Coq.ZArith.Zdiv]
c:196 [in Coq.MSets.MSetPositive]
c:197 [in Coq.Reals.Rtopology]
C:197 [in Coq.Logic.ClassicalFacts]
c:198 [in Coq.Reals.Rtopology]
c:199 [in Coq.ssr.ssrbool]
c:199 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:2 [in Coq.ssr.ssreflect]
c:2 [in Coq.Reals.Ratan]
C:20 [in Coq.Classes.Morphisms]
c:20 [in Coq.Reals.Rtopology]
c:20 [in Coq.Reals.Rgeom]
c:200 [in Coq.ZArith.Zdiv]
c:200 [in Coq.Numbers.Integer.Abstract.ZBits]
c:202 [in Coq.ssr.ssrbool]
c:202 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:203 [in Coq.Numbers.Integer.Abstract.ZBits]
c:204 [in Coq.MSets.MSetPositive]
c:205 [in Coq.ZArith.Zdiv]
c:206 [in Coq.Numbers.Integer.Abstract.ZBits]
c:207 [in Coq.Reals.Rfunctions]
c:207 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
C:207 [in Coq.Vectors.VectorDef]
c:208 [in Coq.ZArith.Zdiv]
c:209 [in Coq.ssr.ssrbool]
c:209 [in Coq.MSets.MSetRBT]
c:209 [in Coq.Numbers.Integer.Abstract.ZBits]
c:21 [in Coq.Reals.MVT]
C:21 [in Coq.Init.Logic]
C:210 [in Coq.Classes.CMorphisms]
c:211 [in Coq.Reals.Rfunctions]
c:212 [in Coq.ssr.ssrbool]
c:212 [in Coq.Numbers.Integer.Abstract.ZBits]
c:214 [in Coq.MSets.MSetRBT]
c:218 [in Coq.ZArith.Zdiv]
C:218 [in Coq.Logic.ClassicalFacts]
c:219 [in Coq.micromega.ZMicromega]
c:22 [in Coq.ZArith.Zpow_facts]
C:22 [in Coq.Program.Combinators]
c:220 [in Coq.FSets.FSetPositive]
c:221 [in Coq.setoid_ring.Ring_polynom]
c:221 [in Coq.Reals.Rtopology]
c:222 [in Coq.Reals.Rtopology]
c:223 [in Coq.ZArith.Zdiv]
c:224 [in Coq.micromega.EnvRing]
c:227 [in Coq.setoid_ring.Ring_polynom]
c:228 [in Coq.FSets.FSetPositive]
c:229 [in Coq.Reals.Rtopology]
C:23 [in Coq.Sets.Constructive_sets]
c:23 [in Coq.Numbers.NatInt.NZPow]
c:23 [in Coq.Reals.MVT]
c:23 [in Coq.Numbers.Integer.Abstract.ZLcm]
c:23 [in Coq.ssr.ssrbool]
c:23 [in Coq.setoid_ring.Ncring_polynom]
c:230 [in Coq.setoid_ring.Ring_polynom]
c:230 [in Coq.micromega.EnvRing]
c:230 [in Coq.Reals.Rtopology]
c:232 [in Coq.Reals.Rtopology]
c:232 [in Coq.micromega.Tauto]
c:233 [in Coq.setoid_ring.Ring_polynom]
c:233 [in Coq.micromega.EnvRing]
c:234 [in Coq.Reals.Rtopology]
C:234 [in Coq.Init.Logic]
c:235 [in Coq.Reals.Rtopology]
c:235 [in Coq.micromega.ZMicromega]
C:235 [in Coq.Vectors.VectorDef]
c:236 [in Coq.setoid_ring.Ring_polynom]
c:236 [in Coq.micromega.EnvRing]
c:236 [in Coq.Reals.Rtopology]
c:237 [in Coq.MSets.MSetRBT]
c:237 [in Coq.Reals.Rtopology]
c:237 [in Coq.Vectors.VectorDef]
c:238 [in Coq.Reals.Rtopology]
c:239 [in Coq.micromega.EnvRing]
c:24 [in Coq.Numbers.Natural.Abstract.NPow]
C:24 [in Coq.Sets.Ensembles]
c:24 [in Coq.Reals.MVT]
c:24 [in Coq.btauto.Algebra]
c:24 [in Coq.Floats.FloatAxioms]
c:240 [in Coq.Reals.Rtopology]
c:242 [in Coq.Reals.Rtopology]
c:243 [in Coq.Reals.Rtopology]
c:243 [in Coq.micromega.ZMicromega]
C:243 [in Coq.Vectors.VectorDef]
c:244 [in Coq.Reals.Rtopology]
c:245 [in Coq.Reals.Rtopology]
c:246 [in Coq.ssr.ssrbool]
c:246 [in Coq.MSets.MSetRBT]
c:246 [in Coq.Reals.Rtopology]
c:247 [in Coq.micromega.ZMicromega]
c:249 [in Coq.Reals.Rtopology]
c:25 [in Coq.ssr.ssrbool]
c:250 [in Coq.micromega.ZMicromega]
c:251 [in Coq.PArith.BinPos]
c:252 [in Coq.Reals.Rtopology]
c:253 [in Coq.Reals.Rtopology]
c:254 [in Coq.Reals.Rtopology]
c:255 [in Coq.MSets.MSetRBT]
c:256 [in Coq.PArith.BinPos]
c:256 [in Coq.micromega.ZMicromega]
c:257 [in Coq.Reals.Rtopology]
c:258 [in Coq.micromega.ZMicromega]
c:259 [in Coq.PArith.BinPos]
c:26 [in Coq.Numbers.NatInt.NZPow]
C:26 [in Coq.Logic.FunctionalExtensionality]
c:26 [in Coq.Numbers.Integer.Abstract.ZLcm]
C:26 [in Coq.Init.Logic]
c:260 [in Coq.Reals.Rtopology]
c:260 [in Coq.micromega.ZMicromega]
c:261 [in Coq.Reals.Rtopology]
c:262 [in Coq.Reals.Rtopology]
c:262 [in Coq.micromega.ZMicromega]
c:265 [in Coq.Reals.Rtopology]
c:268 [in Coq.Reals.Rtopology]
c:269 [in Coq.Reals.Rtopology]
c:27 [in Coq.Numbers.Natural.Abstract.NPow]
c:27 [in Coq.ssr.ssrbool]
c:270 [in Coq.Reals.Rtopology]
c:271 [in Coq.Reals.Rtopology]
c:272 [in Coq.Reals.Rtopology]
c:274 [in Coq.setoid_ring.Ring_polynom]
c:274 [in Coq.Reals.Ratan]
c:277 [in Coq.Reals.Rtopology]
c:277 [in Coq.Reals.Ratan]
c:278 [in Coq.setoid_ring.Ncring_tac]
c:278 [in Coq.Reals.Rtopology]
c:278 [in Coq.Reals.Ratan]
c:278 [in Coq.QArith.QArith_base]
c:279 [in Coq.Reals.Rtopology]
c:28 [in Coq.Numbers.Natural.Abstract.NLcm]
c:28 [in Coq.Structures.OrderedTypeAlt]
C:28 [in Coq.Sets.Powerset_facts]
c:280 [in Coq.Reals.Rtopology]
c:280 [in Coq.QArith.QArith_base]
c:281 [in Coq.setoid_ring.Ring_polynom]
c:283 [in Coq.QArith.QArith_base]
c:285 [in Coq.QArith.QArith_base]
c:287 [in Coq.MSets.MSetGenTree]
c:289 [in Coq.QArith.QArith_base]
C:29 [in Coq.Sets.Constructive_sets]
c:29 [in Coq.Numbers.NatInt.NZPow]
c:29 [in Coq.Numbers.Integer.Abstract.ZLcm]
c:29 [in Coq.ssr.ssrbool]
c:29 [in Coq.Reals.Ratan]
C:29 [in Coq.Init.Logic]
c:291 [in Coq.QArith.QArith_base]
c:293 [in Coq.MSets.MSetGenTree]
c:294 [in Coq.QArith.QArith_base]
c:295 [in Coq.PArith.BinPos]
C:295 [in Coq.setoid_ring.Ring_theory]
c:296 [in Coq.QArith.QArith_base]
c:297 [in Coq.micromega.RingMicromega]
c:298 [in Coq.PArith.BinPos]
C:298 [in Coq.Logic.ChoiceFacts]
C:3 [in Coq.Sets.Constructive_sets]
c:3 [in Coq.Numbers.Natural.Abstract.NBits]
c:3 [in Coq.Strings.Ascii]
c:3 [in Coq.Numbers.Integer.Abstract.ZBits]
C:3 [in Coq.Program.Basics]
c:3 [in Coq.Reals.ClassicalConstructiveReals]
C:3 [in Coq.Init.Tactics]
C:3 [in Coq.Bool.DecBool]
c:307 [in Coq.micromega.Tauto]
c:309 [in Coq.Reals.RiemannInt]
c:31 [in Coq.Reals.MVT]
C:31 [in Coq.Logic.ExtensionalityFacts]
c:31 [in Coq.Numbers.Natural.Abstract.NLcm]
c:31 [in Coq.ssr.ssrbool]
C:31 [in Coq.Sets.Powerset_facts]
c:312 [in Coq.Reals.RiemannInt]
c:312 [in Coq.micromega.Tauto]
C:315 [in Coq.Logic.ChoiceFacts]
c:316 [in Coq.micromega.Tauto]
c:317 [in Coq.Reals.RiemannInt_SF]
c:32 [in Coq.Numbers.Natural.Abstract.NPow]
c:32 [in Coq.Reals.MVT]
c:32 [in Coq.Numbers.Integer.Abstract.ZLcm]
c:32 [in Coq.Reals.Ratan]
C:32 [in Coq.Init.Logic]
c:323 [in Coq.Reals.RIneq]
c:325 [in Coq.Reals.RiemannInt_SF]
c:33 [in Coq.Reals.Abstract.ConstructiveReals]
c:33 [in Coq.Reals.MVT]
C:33 [in Coq.Logic.FunctionalExtensionality]
c:33 [in Coq.setoid_ring.Integral_domain]
c:33 [in Coq.ZArith.Znumtheory]
c:330 [in Coq.Reals.Ratan]
c:331 [in Coq.Reals.Ratan]
c:332 [in Coq.Reals.Ratan]
c:332 [in Coq.Reals.RiemannInt_SF]
c:333 [in Coq.Reals.Ratan]
c:334 [in Coq.Reals.Ratan]
c:335 [in Coq.Reals.Ratan]
c:336 [in Coq.Numbers.Natural.Abstract.NBits]
c:336 [in Coq.Reals.Ratan]
c:337 [in Coq.Reals.Ratan]
C:339 [in Coq.Logic.ChoiceFacts]
c:339 [in Coq.Reals.RiemannInt_SF]
c:34 [in Coq.Reals.MVT]
C:34 [in Coq.Sets.Powerset_facts]
c:344 [in Coq.Reals.RiemannInt_SF]
c:346 [in Coq.Numbers.Natural.Abstract.NBits]
c:346 [in Coq.FSets.FMapFullAVL]
c:349 [in Coq.MSets.MSetGenTree]
c:35 [in Coq.Numbers.Natural.Abstract.NPow]
c:35 [in Coq.Reals.MVT]
c:35 [in Coq.setoid_ring.Field_theory]
C:35 [in Coq.Init.Logic]
c:350 [in Coq.FSets.FMapFullAVL]
c:351 [in Coq.Numbers.Natural.Abstract.NBits]
c:352 [in Coq.Reals.RiemannInt_SF]
c:353 [in Coq.MSets.MSetGenTree]
c:354 [in Coq.MSets.MSetInterface]
c:357 [in Coq.Reals.Ratan]
c:359 [in Coq.Reals.RiemannInt_SF]
c:359 [in Coq.micromega.ZMicromega]
c:36 [in Coq.Numbers.NatInt.NZPow]
c:36 [in Coq.Reals.MVT]
c:360 [in Coq.Reals.Ratan]
c:364 [in Coq.Reals.RiemannInt_SF]
c:37 [in Coq.Reals.MVT]
C:37 [in Coq.Logic.ExtensionalityFacts]
c:37 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
c:372 [in Coq.Reals.RiemannInt_SF]
C:377 [in Coq.FSets.FMapWeakList]
c:379 [in Coq.Reals.RiemannInt_SF]
c:38 [in Coq.Numbers.Natural.Abstract.NPow]
c:38 [in Coq.Reals.MVT]
C:38 [in Coq.Init.Logic]
c:388 [in Coq.MSets.MSetRBT]
c:39 [in Coq.Numbers.NatInt.NZPow]
c:39 [in Coq.Reals.MVT]
C:4 [in Coq.micromega.EnvRing]
c:4 [in Coq.Reals.PSeries_reg]
C:40 [in Coq.Sets.Ensembles]
C:40 [in Coq.Logic.FunctionalExtensionality]
C:40 [in Coq.Numbers.Cyclic.Int63.Cyclic63]
c:400 [in Coq.Numbers.Integer.Abstract.ZBits]
C:404 [in Coq.Lists.List]
c:406 [in Coq.setoid_ring.Ring_polynom]
c:408 [in Coq.setoid_ring.Ring_polynom]
c:41 [in Coq.Reals.Runcountable]
c:41 [in Coq.Structures.OrdersAlt]
C:41 [in Coq.Init.Logic]
c:411 [in Coq.setoid_ring.Ring_polynom]
c:411 [in Coq.Numbers.Integer.Abstract.ZBits]
c:415 [in Coq.Numbers.Integer.Abstract.ZBits]
c:42 [in Coq.Numbers.Natural.Abstract.NPow]
c:420 [in Coq.Numbers.Integer.Abstract.ZBits]
C:423 [in Coq.Init.Logic]
c:43 [in Coq.ZArith.Znumtheory]
C:43 [in Coq.rtauto.Rtauto]
c:434 [in Coq.Logic.ChoiceFacts]
c:436 [in Coq.Logic.ChoiceFacts]
c:438 [in Coq.Reals.Ranalysis1]
c:44 [in Coq.Numbers.NatInt.NZPow]
c:44 [in Coq.Reals.MVT]
c:444 [in Coq.Reals.Ranalysis1]
c:445 [in Coq.Reals.RiemannInt]
C:445 [in Coq.FSets.FMapList]
c:446 [in Coq.Reals.Ranalysis5]
C:45 [in Coq.Sets.Ensembles]
c:45 [in Coq.Reals.MVT]
c:45 [in Coq.Reals.Ratan]
c:450 [in Coq.Logic.ChoiceFacts]
c:452 [in Coq.Reals.Ranalysis1]
c:452 [in Coq.Logic.ChoiceFacts]
c:453 [in Coq.Reals.RiemannInt]
c:453 [in Coq.Reals.Ranalysis5]
c:454 [in Coq.Reals.Ranalysis5]
c:455 [in Coq.Reals.Ranalysis5]
c:456 [in Coq.Reals.Ranalysis5]
c:457 [in Coq.Reals.RiemannInt]
c:457 [in Coq.Reals.Ranalysis5]
c:458 [in Coq.setoid_ring.Ring_polynom]
c:458 [in Coq.Reals.Ranalysis5]
c:459 [in Coq.Reals.Ranalysis5]
c:46 [in Coq.Numbers.Natural.Abstract.NPow]
c:46 [in Coq.Reals.MVT]
c:46 [in Coq.ZArith.Znumtheory]
c:460 [in Coq.setoid_ring.Ring_polynom]
c:460 [in Coq.Reals.Ranalysis5]
c:461 [in Coq.Reals.RiemannInt]
c:461 [in Coq.Reals.Ranalysis5]
c:462 [in Coq.Reals.Ranalysis5]
c:463 [in Coq.setoid_ring.Ring_polynom]
c:463 [in Coq.Reals.Ranalysis5]
c:464 [in Coq.Reals.Ranalysis5]
c:465 [in Coq.Reals.RiemannInt]
c:465 [in Coq.Reals.Ranalysis5]
c:466 [in Coq.Reals.Ranalysis5]
c:467 [in Coq.Reals.Ranalysis5]
c:468 [in Coq.Reals.Ranalysis5]
c:47 [in Coq.Numbers.NatInt.NZPow]
c:47 [in Coq.Reals.MVT]
C:47 [in Coq.Init.Logic]
c:48 [in Coq.Reals.MVT]
c:48 [in Coq.Reals.Ratan]
C:48 [in Coq.Logic.ClassicalFacts]
C:48 [in Coq.rtauto.Rtauto]
C:484 [in Coq.ssr.ssrbool]
c:49 [in Coq.Reals.Ranalysis1]
c:49 [in Coq.Numbers.Natural.Abstract.NPow]
c:49 [in Coq.Reals.MVT]
c:49 [in Coq.Reals.Abstract.ConstructiveMinMax]
C:498 [in Coq.ssr.ssrbool]
c:5 [in Coq.Numbers.DecimalString]
C:5 [in Coq.Sets.Ensembles]
c:5 [in Coq.Reals.MVT]
c:5 [in Coq.Numbers.Natural.Abstract.NLcm]
c:5 [in Coq.Numbers.HexadecimalString]
c:50 [in Coq.Numbers.NatInt.NZPow]
c:50 [in Coq.setoid_ring.Ring_polynom]
c:50 [in Coq.Reals.MVT]
C:50 [in Coq.Init.Logic]
C:50 [in Coq.Logic.ClassicalFacts]
c:500 [in Coq.Reals.RiemannInt]
C:506 [in Coq.Init.Specif]
C:506 [in Coq.ssr.ssrbool]
c:51 [in Coq.Numbers.Natural.Abstract.NDiv]
c:51 [in Coq.Reals.MVT]
C:516 [in Coq.ssr.ssrbool]
c:52 [in Coq.Numbers.Natural.Abstract.NPow]
c:52 [in Coq.Reals.MVT]
c:52 [in Coq.micromega.EnvRing]
c:52 [in Coq.Reals.Ratan]
c:52 [in Coq.micromega.RMicromega]
c:52 [in Coq.NArith.Ndec]
c:53 [in Coq.Reals.MVT]
c:53 [in Coq.Reals.R_sqrt]
c:54 [in Coq.Reals.Ranalysis2]
c:54 [in Coq.Numbers.NatInt.NZPow]
C:54 [in Coq.Sets.Ensembles]
c:54 [in Coq.setoid_ring.Ring_polynom]
c:54 [in Coq.Reals.MVT]
C:54 [in Coq.Logic.ClassicalFacts]
c:55 [in Coq.Reals.Runcountable]
c:55 [in Coq.Numbers.Natural.Abstract.NPow]
c:55 [in Coq.Reals.MVT]
c:55 [in Coq.setoid_ring.Ncring_polynom]
C:55 [in Coq.Init.Logic]
c:55 [in Coq.NArith.Ndec]
C:56 [in Coq.Sets.Ensembles]
c:56 [in Coq.Reals.MVT]
c:56 [in Coq.micromega.EnvRing]
c:57 [in Coq.Reals.MVT]
c:57 [in Coq.Reals.R_sqrt]
c:57 [in Coq.Numbers.Integer.Abstract.ZLcm]
c:58 [in Coq.Reals.Ranalysis2]
c:58 [in Coq.Numbers.Natural.Abstract.NPow]
c:58 [in Coq.Numbers.NatInt.NZPow]
C:58 [in Coq.Init.Logic]
c:58 [in Coq.NArith.Ndec]
c:6 [in Coq.Structures.OrdersAlt]
c:6 [in Coq.Numbers.Natural.Abstract.NBits]
c:6 [in Coq.Structures.OrderedTypeAlt]
C:6 [in Coq.Classes.CRelationClasses]
c:6 [in Coq.Numbers.Integer.Abstract.ZBits]
c:6 [in Coq.Reals.Cauchy.QExtra]
c:60 [in Coq.Reals.R_sqrt]
c:60 [in Coq.Numbers.Integer.Abstract.ZLcm]
C:60 [in Coq.ssr.ssreflect]
c:604 [in Coq.Reals.RIneq]
c:607 [in Coq.Reals.RIneq]
c:61 [in Coq.Numbers.Natural.Abstract.NPow]
c:61 [in Coq.Numbers.NatInt.NZPow]
C:61 [in Coq.Init.Logic]
c:61 [in Coq.NArith.Ndec]
c:62 [in Coq.Reals.MVT]
c:62 [in Coq.setoid_ring.Field_theory]
c:63 [in Coq.Reals.Runcountable]
c:63 [in Coq.Reals.R_sqrt]
c:63 [in Coq.ZArith.Zquot]
c:64 [in Coq.Numbers.NatInt.NZPow]
c:64 [in Coq.Reals.MVT]
C:64 [in Coq.Logic.ClassicalFacts]
c:64 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
c:65 [in Coq.Reals.MVT]
c:65 [in Coq.Numbers.NatInt.NZDiv]
C:65 [in Coq.Logic.ClassicalFacts]
C:659 [in Coq.Init.Specif]
c:66 [in Coq.Numbers.Natural.Abstract.NPow]
c:66 [in Coq.Reals.R_sqrt]
c:66 [in Coq.setoid_ring.Field_theory]
C:66 [in Coq.Init.Logic]
c:67 [in Coq.Numbers.NatInt.NZPow]
c:67 [in Coq.Reals.Cauchy.ConstructiveCauchyRealsMult]
C:68 [in Coq.Logic.ClassicalFacts]
c:68 [in Coq.Reals.R_sqr]
c:68 [in Coq.ZArith.Znumtheory]
c:69 [in Coq.Numbers.Natural.Abstract.NPow]
c:69 [in Coq.Reals.R_sqrt]
c:69 [in Coq.Init.Specif]
c:7 [in Coq.Reals.MVT]
c:7 [in Coq.Reals.Machin]
C:7 [in Coq.Init.Tactics]
c:70 [in Coq.Numbers.NatInt.NZPow]
C:70 [in Coq.Numbers.NaryFunctions]
c:70 [in Coq.Reals.NewtonInt]
c:71 [in Coq.Reals.MVT]
C:71 [in Coq.Logic.ClassicalFacts]
c:72 [in Coq.Numbers.Natural.Abstract.NDiv]
c:72 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
C:725 [in Coq.Init.Specif]
c:73 [in Coq.Numbers.NatInt.NZPow]
c:73 [in Coq.Reals.R_sqrt]
c:73 [in Coq.setoid_ring.Field_theory]
c:73 [in Coq.omega.OmegaLemmas]
c:73 [in Coq.setoid_ring.Ncring_polynom]
C:74 [in Coq.Init.Datatypes]
c:75 [in Coq.Numbers.Natural.Abstract.NDiv]
C:75 [in Coq.Logic.ClassicalFacts]
c:75 [in Coq.Reals.RiemannInt_SF]
C:76 [in Coq.Classes.Morphisms]
c:77 [in Coq.setoid_ring.Ncring_polynom]
c:78 [in Coq.Numbers.Natural.Abstract.NDiv]
c:78 [in Coq.Numbers.NatInt.NZPow]
C:78 [in Coq.Logic.ClassicalFacts]
c:78 [in Coq.Reals.RiemannInt_SF]
c:8 [in Coq.ZArith.Zpow_facts]
c:8 [in Coq.Numbers.Natural.Abstract.NLcm]
c:8 [in Coq.Reals.Cauchy.PosExtra]
c:80 [in Coq.setoid_ring.Field_theory]
C:80 [in Coq.Init.Datatypes]
c:81 [in Coq.Numbers.Natural.Abstract.NDiv]
c:81 [in Coq.Numbers.NatInt.NZPow]
c:81 [in Coq.Numbers.Integer.Abstract.ZDivTrunc]
c:81 [in Coq.Reals.Ratan]
c:82 [in Coq.Reals.Ratan]
c:83 [in Coq.Reals.Ratan]
c:84 [in Coq.Numbers.Natural.Abstract.NDiv]
c:84 [in Coq.Numbers.NatInt.NZPow]
c:84 [in Coq.setoid_ring.Field_theory]
c:84 [in Coq.Reals.Ratan]
c:85 [in Coq.ZArith.Zquot]
c:85 [in Coq.Reals.Ratan]
C:85 [in Coq.Logic.ClassicalFacts]
c:86 [in Coq.MSets.MSetGenTree]
C:86 [in Coq.Init.Datatypes]
c:86 [in Coq.Reals.Ratan]
c:86 [in Coq.Numbers.NatInt.NZDiv]
c:87 [in Coq.Numbers.Natural.Abstract.NDiv]
c:87 [in Coq.Numbers.NatInt.NZPow]
C:87 [in Coq.Classes.CMorphisms]
c:87 [in Coq.Reals.Ratan]
C:88 [in Coq.micromega.RingMicromega]
c:88 [in Coq.ZArith.Zquot]
c:88 [in Coq.Reals.Ratan]
C:88 [in Coq.Logic.ClassicalFacts]
c:89 [in Coq.Reals.NewtonInt]
C:89 [in Coq.Init.Datatypes]
c:89 [in Coq.Numbers.NatInt.NZDiv]
c:9 [in Coq.Numbers.Natural.Abstract.NPow]
c:9 [in Coq.Reals.MVT]
c:9 [in Coq.Numbers.Cyclic.Abstract.DoubleType]
C:9 [in Coq.Program.Combinators]
C:9 [in Coq.Bool.DecBool]
c:90 [in Coq.Numbers.Natural.Abstract.NDiv]
c:90 [in Coq.setoid_ring.Field_theory]
c:90 [in Coq.ZArith.Zdiv]
c:90 [in Coq.MSets.MSetGenTree]
c:91 [in Coq.ZArith.Zquot]
c:92 [in Coq.Reals.Cauchy.ConstructiveCauchyAbs]
c:92 [in Coq.Init.Specif]
c:92 [in Coq.Numbers.NatInt.NZDiv]
c:92 [in Coq.NArith.Ndec]
c:93 [in Coq.setoid_ring.Ring_polynom]
c:93 [in Coq.ZArith.Zdiv]
c:94 [in Coq.setoid_ring.Field_theory]
c:94 [in Coq.MSets.MSetGenTree]
c:94 [in Coq.ZArith.Zquot]
c:95 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:95 [in Coq.micromega.EnvRing]
c:95 [in Coq.Reals.NewtonInt]
c:95 [in Coq.Numbers.NatInt.NZDiv]
c:95 [in Coq.Reals.Abstract.ConstructiveMinMax]
c:95 [in Coq.NArith.Ndec]
c:97 [in Coq.setoid_ring.Ring_polynom]
c:97 [in Coq.ZArith.Zquot]
c:97 [in Coq.Numbers.Integer.Abstract.ZDivFloor]
c:98 [in Coq.Numbers.Integer.Abstract.ZDivEucl]
c:98 [in Coq.Reals.Cauchy.ConstructiveCauchyAbs]
c:98 [in Coq.Numbers.NatInt.NZDiv]
c:98 [in Coq.NArith.Ndec]
c:99 [in Coq.micromega.EnvRing]
c:99 [in Coq.Reals.NewtonInt]
c:99 [in Coq.setoid_ring.Ncring_polynom]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (69982 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1000 entries)
Binder Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (45451 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (770 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1516 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (577 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (11564 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (981 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (622 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (299 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (472 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (482 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (843 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1156 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4086 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (163 entries)