Library Coq.Logic.ExtensionalityFacts


Some facts and definitions about extensionality
We investigate the relations between the following extensionality principles
  • Functional extensionality
  • Equality of projections from diagonal
  • Unicity of inverse bijections
  • Bijectivity of bijective composition
Table of contents
1. Definitions
2. Functional extensionality <-> Equality of projections from diagonal
3. Functional extensionality <-> Unicity of inverse bijections
4. Functional extensionality <-> Bijectivity of bijective composition

Set Implicit Arguments.

Definitions

Being an inverse

Definition is_inverse A B f g := (forall a:A, g (f a) = a) /\ (forall b:B, f (g b) = b).

The diagonal over A and the one-one correspondence with A

#[universes(template)]
Record Delta A := { pi1:A; pi2:A; eq:pi1=pi2 }.

Definition delta {A} (a:A) := {| pi1 := a; pi2 := a; eq := eq_refl a |}.


Lemma diagonal_projs_same_behavior : forall A (x:Delta A), pi1 x = pi2 x.

Lemma diagonal_inverse1 : forall A, is_inverse (A:=A) delta pi1.

Lemma diagonal_inverse2 : forall A, is_inverse (A:=A) delta pi2.

Functional extensionality


Equality of projections from diagonal


Unicity of bijection inverse


Bijectivity of bijective composition

Definition action A B C (f:A->B) := (fun h:B->C => fun x => h (f x)).


Functional extensionality <-> Equality of projections from diagonal

Functional extensionality <-> Unicity of bijection inverse

Functional extensionality <-> Bijectivity of bijective composition