Library Coq.MSets.MSetInterface


Finite set library

Set interfaces, inspired by the one of Ocaml. When compared with Ocaml, the main differences are:
  • the lack of iter function, useless since Coq is purely functional
  • the use of option types instead of Not_found exceptions
  • the use of nat instead of int for the cardinal function
Several variants of the set interfaces are available:
  • WSetsOn : functorial signature for weak sets
  • WSets : self-contained version of WSets
  • SetsOn : functorial signature for ordered sets
  • Sets : self-contained version of Sets
  • WRawSets : a signature for weak sets that may be ill-formed
  • RawSets : same for ordered sets
If unsure, S = Sets is probably what you're looking for: most other signatures are subsets of it, while Sets can be obtained from RawSets via the use of a subset type (see (W)Raw2Sets below).

Require Export Bool SetoidList RelationClasses Morphisms
 RelationPairs Equalities Orders OrdersFacts.
Set Implicit Arguments.

Module Type TypElt.
 Parameters t elt : Type.
End TypElt.

Module Type HasWOps (Import T:TypElt).

  Parameter empty : t.
The empty set.

  Parameter is_empty : t -> bool.
Test whether a set is empty or not.

  Parameter mem : elt -> t -> bool.
mem x s tests whether x belongs to the set s.

  Parameter add : elt -> t -> t.
add x s returns a set containing all elements of s, plus x. If x was already in s, s is returned unchanged.

  Parameter singleton : elt -> t.
singleton x returns the one-element set containing only x.

  Parameter remove : elt -> t -> t.
remove x s returns a set containing all elements of s, except x. If x was not in s, s is returned unchanged.

  Parameter union : t -> t -> t.
Set union.

  Parameter inter : t -> t -> t.
Set intersection.

  Parameter diff : t -> t -> t.
Set difference.

  Parameter equal : t -> t -> bool.
equal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain equal elements.

  Parameter subset : t -> t -> bool.
subset s1 s2 tests whether the set s1 is a subset of the set s2.

  Parameter fold : forall A : Type, (elt -> A -> A) -> t -> A -> A.
fold f s a computes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are the elements of s. The order in which elements of s are presented to f is unspecified.

  Parameter for_all : (elt -> bool) -> t -> bool.
for_all p s checks if all elements of the set satisfy the predicate p.

  Parameter exists_ : (elt -> bool) -> t -> bool.
exists p s checks if at least one element of the set satisfies the predicate p.

  Parameter filter : (elt -> bool) -> t -> t.
filter p s returns the set of all elements in s that satisfy predicate p.

  Parameter partition : (elt -> bool) -> t -> t * t.
partition p s returns a pair of sets (s1, s2), where s1 is the set of all the elements of s that satisfy the predicate p, and s2 is the set of all the elements of s that do not satisfy p.

  Parameter cardinal : t -> nat.
Return the number of elements of a set.

  Parameter elements : t -> list elt.
Return the list of all elements of the given set, in any order.

  Parameter choose : t -> option elt.
Return one element of the given set, or None if the set is empty. Which element is chosen is unspecified. Equal sets could return different elements.

End HasWOps.

Module Type WOps (E : DecidableType).
  Definition elt := E.t.
  Parameter t : Type.
the abstract type of sets
  Include HasWOps.
End WOps.

Functorial signature for weak sets

Weak sets are sets without ordering on base elements, only a decidable equality.

Module Type WSetsOn (E : DecidableType).
First, we ask for all the functions
  Include WOps E.

Logical predicates
  Parameter In : elt -> t -> Prop.
#[global]
  Declare Instance In_compat : Proper (E.eq==>eq==>iff) In.

  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.

  Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
  Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).

  Definition eq : t -> t -> Prop := Equal.
  Include IsEq.
eq is obviously an equivalence, for subtyping only
  Include HasEqDec.

Specifications of set operators

  Section Spec.
  Variable s s': t.
  Variable x y : elt.
  Variable f : elt -> bool.
  Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).

  Parameter mem_spec : mem x s = true <-> In x s.
  Parameter equal_spec : equal s s' = true <-> s[=]s'.
  Parameter subset_spec : subset s s' = true <-> s[<=]s'.
  Parameter empty_spec : Empty empty.
  Parameter is_empty_spec : is_empty s = true <-> Empty s.
  Parameter add_spec : In y (add x s) <-> E.eq y x \/ In y s.
  Parameter remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
  Parameter singleton_spec : In y (singleton x) <-> E.eq y x.
  Parameter union_spec : In x (union s s') <-> In x s \/ In x s'.
  Parameter inter_spec : In x (inter s s') <-> In x s /\ In x s'.
  Parameter diff_spec : In x (diff s s') <-> In x s /\ ~In x s'.
  Parameter fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
    fold f s i = fold_left (flip f) (elements s) i.
  Parameter cardinal_spec : cardinal s = length (elements s).
  Parameter filter_spec : compatb f ->
    (In x (filter f s) <-> In x s /\ f x = true).
  Parameter for_all_spec : compatb f ->
    (for_all f s = true <-> For_all (fun x => f x = true) s).
  Parameter exists_spec : compatb f ->
    (exists_ f s = true <-> Exists (fun x => f x = true) s).
  Parameter partition_spec1 : compatb f ->
    fst (partition f s) [=] filter f s.
  Parameter partition_spec2 : compatb f ->
    snd (partition f s) [=] filter (fun x => negb (f x)) s.
  Parameter elements_spec1 : InA E.eq x (elements s) <-> In x s.
When compared with ordered sets, here comes the only property that is really weaker:
  Parameter elements_spec2w : NoDupA E.eq (elements s).
  Parameter choose_spec1 : choose s = Some x -> In x s.
  Parameter choose_spec2 : choose s = None -> Empty s.

  End Spec.

End WSetsOn.

Static signature for weak sets

Similar to the functorial signature WSetsOn, except that the module E of base elements is incorporated in the signature.

Module Type WSets.
  Declare Module E : DecidableType.
  Include WSetsOn E.
End WSets.

Functorial signature for sets on ordered elements

Based on WSetsOn, plus ordering on sets and min_elt and max_elt and some stronger specifications for other functions.

Module Type HasOrdOps (Import T:TypElt).

  Parameter compare : t -> t -> comparison.
Total ordering between sets. Can be used as the ordering function for doing sets of sets.

  Parameter min_elt : t -> option elt.
Return the smallest element of the given set (with respect to the E.compare ordering), or None if the set is empty.

  Parameter max_elt : t -> option elt.
Same as min_elt, but returns the largest element of the given set.

End HasOrdOps.

Module Type Ops (E : OrderedType) := WOps E <+ HasOrdOps.

Module Type SetsOn (E : OrderedType).
  Include WSetsOn E <+ HasOrdOps <+ HasLt <+ IsStrOrder.

  Section Spec.
  Variable s s': t.
  Variable x y : elt.

  Parameter compare_spec : CompSpec eq lt s s' (compare s s').

Additional specification of elements
  Parameter elements_spec2 : sort E.lt (elements s).

Remark: since fold is specified via elements, this stronger specification of elements has an indirect impact on fold, which can now be proved to receive elements in increasing order.

  Parameter min_elt_spec1 : min_elt s = Some x -> In x s.
  Parameter min_elt_spec2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
  Parameter min_elt_spec3 : min_elt s = None -> Empty s.

  Parameter max_elt_spec1 : max_elt s = Some x -> In x s.
  Parameter max_elt_spec2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
  Parameter max_elt_spec3 : max_elt s = None -> Empty s.

Additional specification of choose
  Parameter choose_spec3 : choose s = Some x -> choose s' = Some y ->
    Equal s s' -> E.eq x y.

  End Spec.

End SetsOn.

Static signature for sets on ordered elements

Similar to the functorial signature SetsOn, except that the module E of base elements is incorporated in the signature.

Module Type Sets.
  Declare Module E : OrderedType.
  Include SetsOn E.
End Sets.

Module Type S := Sets.

Some subtyping tests

WSetsOn ---> WSets
 |           |
 |           |
 V           V
SetsOn  ---> Sets

Module S_WS (M : Sets) <: WSets := M.
Module Sfun_WSfun (E:OrderedType)(M : SetsOn E) <: WSetsOn E := M.
Module S_Sfun (M : Sets) <: SetsOn M.E := M.
Module WS_WSfun (M : WSets) <: WSetsOn M.E := M.

Signatures for set representations with ill-formed values.

Motivation:
For many implementation of finite sets (AVL trees, sorted lists, lists without duplicates), we use the same two-layer approach:
  • A first module deals with the datatype (eg. list or tree) without
any restriction on the values we consider. In this module (named "Raw" in the past), some results are stated under the assumption that some invariant (e.g. sortedness) holds for the input sets. We also prove that this invariant is preserved by set operators.
  • A second module implements the exact Sets interface by
using a subtype, for instance { l : list A | sorted l }. This module is a mere wrapper around the first Raw module.
With the interfaces below, we give some respectability to the "Raw" modules. This allows the interested users to directly access them via the interfaces. Even better, we can build once and for all a functor doing the transition between Raw and usual Sets.
Description:
The type t of sets may contain ill-formed values on which our set operators may give wrong answers. In particular, mem may not see a element in a ill-formed set (think for instance of a unsorted list being given to an optimized mem that stops its search as soon as a strictly larger element is encountered).
Unlike optimized operators, the In predicate is supposed to always be correct, even on ill-formed sets. Same for Equal and other logical predicates.
A predicate parameter Ok is used to discriminate between well-formed and ill-formed values. Some lemmas hold only on sets validating Ok. This predicate Ok is required to be preserved by set operators. Moreover, a boolean function isok should exist for identifying (at least some of) the well-formed sets.

Module Type WRawSets (E : DecidableType).
First, we ask for all the functions
  Include WOps E.

Is a set well-formed or ill-formed ?

  Parameter IsOk : t -> Prop.
  Class Ok (s:t) : Prop := ok : IsOk s.

In order to be able to validate (at least some) particular sets as well-formed, we ask for a boolean function for (semi-)deciding predicate Ok. If Ok isn't decidable, isok may be the always-false function.
  Parameter isok : t -> bool.
MS: Dangerous instance, the isok s = true hypothesis cannot be discharged with typeclass resolution. Is it really an instance?
#[global]
  Declare Instance isok_Ok s `(isok s = true) : Ok s | 10.

Logical predicates
  Parameter In : elt -> t -> Prop.
#[global]
  Declare Instance In_compat : Proper (E.eq==>eq==>iff) In.

  Definition Equal s s' := forall a : elt, In a s <-> In a s'.
  Definition Subset s s' := forall a : elt, In a s -> In a s'.
  Definition Empty s := forall a : elt, ~ In a s.
  Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
  Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.

  Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
  Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).

  Definition eq : t -> t -> Prop := Equal.
#[global]
  Declare Instance eq_equiv : Equivalence eq.

First, all operations are compatible with the well-formed predicate.

#[global]
  Declare Instance empty_ok : Ok empty.
#[global]
  Declare Instance add_ok s x `(Ok s) : Ok (add x s).
#[global]
  Declare Instance remove_ok s x `(Ok s) : Ok (remove x s).
#[global]
  Declare Instance singleton_ok x : Ok (singleton x).
#[global]
  Declare Instance union_ok s s' `(Ok s, Ok s') : Ok (union s s').
#[global]
  Declare Instance inter_ok s s' `(Ok s, Ok s') : Ok (inter s s').
#[global]
  Declare Instance diff_ok s s' `(Ok s, Ok s') : Ok (diff s s').
#[global]
  Declare Instance filter_ok s f `(Ok s) : Ok (filter f s).
#[global]
  Declare Instance partition_ok1 s f `(Ok s) : Ok (fst (partition f s)).
#[global]
  Declare Instance partition_ok2 s f `(Ok s) : Ok (snd (partition f s)).

Now, the specifications, with constraints on the input sets.

  Section Spec.
  Variable s s': t.
  Variable x y : elt.
  Variable f : elt -> bool.
  Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).

  Parameter mem_spec : forall `{Ok s}, mem x s = true <-> In x s.
  Parameter equal_spec : forall `{Ok s, Ok s'},
    equal s s' = true <-> s[=]s'.
  Parameter subset_spec : forall `{Ok s, Ok s'},
    subset s s' = true <-> s[<=]s'.
  Parameter empty_spec : Empty empty.
  Parameter is_empty_spec : is_empty s = true <-> Empty s.
  Parameter add_spec : forall `{Ok s},
    In y (add x s) <-> E.eq y x \/ In y s.
  Parameter remove_spec : forall `{Ok s},
    In y (remove x s) <-> In y s /\ ~E.eq y x.
  Parameter singleton_spec : In y (singleton x) <-> E.eq y x.
  Parameter union_spec : forall `{Ok s, Ok s'},
    In x (union s s') <-> In x s \/ In x s'.
  Parameter inter_spec : forall `{Ok s, Ok s'},
    In x (inter s s') <-> In x s /\ In x s'.
  Parameter diff_spec : forall `{Ok s, Ok s'},
    In x (diff s s') <-> In x s /\ ~In x s'.
  Parameter fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
    fold f s i = fold_left (flip f) (elements s) i.
  Parameter cardinal_spec : forall `{Ok s},
    cardinal s = length (elements s).
  Parameter filter_spec : compatb f ->
    (In x (filter f s) <-> In x s /\ f x = true).
  Parameter for_all_spec : compatb f ->
    (for_all f s = true <-> For_all (fun x => f x = true) s).
  Parameter exists_spec : compatb f ->
    (exists_ f s = true <-> Exists (fun x => f x = true) s).
  Parameter partition_spec1 : compatb f ->
    fst (partition f s) [=] filter f s.
  Parameter partition_spec2 : compatb f ->
    snd (partition f s) [=] filter (fun x => negb (f x)) s.
  Parameter elements_spec1 : InA E.eq x (elements s) <-> In x s.
  Parameter elements_spec2w : forall `{Ok s}, NoDupA E.eq (elements s).
  Parameter choose_spec1 : choose s = Some x -> In x s.
  Parameter choose_spec2 : choose s = None -> Empty s.

  End Spec.

End WRawSets.

From weak raw sets to weak usual sets
We avoid creating induction principles for the Record

 Definition elt := E.t.

 Record t_ := Mkt {this :> M.t; is_ok : M.Ok this}.
 Definition t := t_.
 #[global]
 Hint Resolve is_ok : typeclass_instances.

 Definition In (x : elt)(s : t) := M.In x (this s).
 Definition Equal (s s' : t) := forall a : elt, In a s <-> In a s'.
 Definition Subset (s s' : t) := forall a : elt, In a s -> In a s'.
 Definition Empty (s : t) := forall a : elt, ~ In a s.
 Definition For_all (P : elt -> Prop)(s : t) := forall x, In x s -> P x.
 Definition Exists (P : elt -> Prop)(s : t) := exists x, In x s /\ P x.

 Definition mem (x : elt)(s : t) := M.mem x s.
 Definition add (x : elt)(s : t) : t := Mkt (M.add x s).
 Definition remove (x : elt)(s : t) : t := Mkt (M.remove x s).
 Definition singleton (x : elt) : t := Mkt (M.singleton x).
 Definition union (s s' : t) : t := Mkt (M.union s s').
 Definition inter (s s' : t) : t := Mkt (M.inter s s').
 Definition diff (s s' : t) : t := Mkt (M.diff s s').
 Definition equal (s s' : t) := M.equal s s'.
 Definition subset (s s' : t) := M.subset s s'.
 Definition empty : t := Mkt M.empty.
 Definition is_empty (s : t) := M.is_empty s.
 Definition elements (s : t) : list elt := M.elements s.
 Definition choose (s : t) : option elt := M.choose s.
 Definition fold (A : Type)(f : elt -> A -> A)(s : t) : A -> A := M.fold f s.
 Definition cardinal (s : t) := M.cardinal s.
 Definition filter (f : elt -> bool)(s : t) : t := Mkt (M.filter f s).
 Definition for_all (f : elt -> bool)(s : t) := M.for_all f s.
 Definition exists_ (f : elt -> bool)(s : t) := M.exists_ f s.
 Definition partition (f : elt -> bool)(s : t) : t * t :=
   let p := M.partition f s in (Mkt (fst p), Mkt (snd p)).

#[global]
 Instance In_compat : Proper (E.eq==>eq==>iff) In.

 Definition eq : t -> t -> Prop := Equal.

#[global]
 Instance eq_equiv : Equivalence eq.

 Definition eq_dec : forall (s s':t), { eq s s' }+{ ~eq s s' }.

 Section Spec.
  Variable s s' : t.
  Variable x y : elt.
  Variable f : elt -> bool.
  Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing).

  Lemma mem_spec : mem x s = true <-> In x s.
  Lemma equal_spec : equal s s' = true <-> Equal s s'.
  Lemma subset_spec : subset s s' = true <-> Subset s s'.
  Lemma empty_spec : Empty empty.
  Lemma is_empty_spec : is_empty s = true <-> Empty s.
  Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
  Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
  Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
  Lemma union_spec : In x (union s s') <-> In x s \/ In x s'.
  Lemma inter_spec : In x (inter s s') <-> In x s /\ In x s'.
  Lemma diff_spec : In x (diff s s') <-> In x s /\ ~In x s'.
  Lemma fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
      fold f s i = fold_left (fun a e => f e a) (elements s) i.
  Lemma cardinal_spec : cardinal s = length (elements s).
  Lemma filter_spec : compatb f ->
    (In x (filter f s) <-> In x s /\ f x = true).
  Lemma for_all_spec : compatb f ->
    (for_all f s = true <-> For_all (fun x => f x = true) s).
  Lemma exists_spec : compatb f ->
    (exists_ f s = true <-> Exists (fun x => f x = true) s).
  Lemma partition_spec1 : compatb f -> Equal (fst (partition f s)) (filter f s).
  Lemma partition_spec2 : compatb f ->
      Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
  Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
  Lemma elements_spec2w : NoDupA E.eq (elements s).
  Lemma choose_spec1 : choose s = Some x -> In x s.
  Lemma choose_spec2 : choose s = None -> Empty s.

 End Spec.

End WRaw2SetsOn.

Module WRaw2Sets (D:DecidableType)(M:WRawSets D) <: WSets with Module E := D.
  Module E := D.
  Include WRaw2SetsOn D M.
End WRaw2Sets.

Same approach for ordered sets

Module Type RawSets (E : OrderedType).
  Include WRawSets E <+ HasOrdOps <+ HasLt <+ IsStrOrder.

  Section Spec.
  Variable s s': t.
  Variable x y : elt.

Specification of compare
  Parameter compare_spec : forall `{Ok s, Ok s'}, CompSpec eq lt s s' (compare s s').

Additional specification of elements
  Parameter elements_spec2 : forall `{Ok s}, sort E.lt (elements s).

Specification of min_elt
  Parameter min_elt_spec1 : min_elt s = Some x -> In x s.
  Parameter min_elt_spec2 : forall `{Ok s}, min_elt s = Some x -> In y s -> ~ E.lt y x.
  Parameter min_elt_spec3 : min_elt s = None -> Empty s.

Specification of max_elt
  Parameter max_elt_spec1 : max_elt s = Some x -> In x s.
  Parameter max_elt_spec2 : forall `{Ok s}, max_elt s = Some x -> In y s -> ~ E.lt x y.
  Parameter max_elt_spec3 : max_elt s = None -> Empty s.

Additional specification of choose
  Parameter choose_spec3 : forall `{Ok s, Ok s'},
    choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y.

  End Spec.

End RawSets.

From Raw to usual sets

Module Raw2SetsOn (O:OrderedType)(M:RawSets O) <: SetsOn O.
  Include WRaw2SetsOn O M.

  Definition compare (s s':t) := M.compare s s'.
  Definition min_elt (s:t) : option elt := M.min_elt s.
  Definition max_elt (s:t) : option elt := M.max_elt s.
  Definition lt (s s':t) := M.lt s s'.

Specification of lt
#[global]
  Instance lt_strorder : StrictOrder lt.

#[global]
  Instance lt_compat : Proper (eq==>eq==>iff) lt.

  Section Spec.
  Variable s s' s'' : t.
  Variable x y : elt.

  Lemma compare_spec : CompSpec eq lt s s' (compare s s').

Additional specification of elements
  Lemma elements_spec2 : sort O.lt (elements s).

Specification of min_elt
  Lemma min_elt_spec1 : min_elt s = Some x -> In x s.
  Lemma min_elt_spec2 : min_elt s = Some x -> In y s -> ~ O.lt y x.
  Lemma min_elt_spec3 : min_elt s = None -> Empty s.

Specification of max_elt
  Lemma max_elt_spec1 : max_elt s = Some x -> In x s.
  Lemma max_elt_spec2 : max_elt s = Some x -> In y s -> ~ O.lt x y.
  Lemma max_elt_spec3 : max_elt s = None -> Empty s.

Additional specification of choose
  Lemma choose_spec3 :
    choose s = Some x -> choose s' = Some y -> Equal s s' -> O.eq x y.

  End Spec.

End Raw2SetsOn.

Module Raw2Sets (O:OrderedType)(M:RawSets O) <: Sets with Module E := O.
  Module E := O.
  Include Raw2SetsOn O M.
End Raw2Sets.

It is in fact possible to provide an ordering on sets with very little information on them (more or less only the In predicate). This generic build of ordering is in fact not used for the moment, we rather use a simpler version dedicated to sets-as-sorted-lists, see MakeListOrdering.

Module Type IN (O:OrderedType).
 Parameter Inline t : Type.
 Parameter Inline In : O.t -> t -> Prop.
#[global]
 Declare Instance In_compat : Proper (O.eq==>eq==>iff) In.
 Definition Equal s s' := forall x, In x s <-> In x s'.
 Definition Empty s := forall x, ~In x s.
End IN.

Module MakeSetOrdering (O:OrderedType)(Import M:IN O).
 Module Import MO := OrderedTypeFacts O.

 Definition eq : t -> t -> Prop := Equal.

#[global]
 Instance eq_equiv : Equivalence eq.

#[global]
 Instance : Proper (O.eq==>eq==>iff) In.

 Definition Below x s := forall y, In y s -> O.lt y x.
 Definition Above x s := forall y, In y s -> O.lt x y.

 Definition EquivBefore x s s' :=
   forall y, O.lt y x -> (In y s <-> In y s').

 Definition EmptyBetween x y s :=
   forall z, In z s -> O.lt z y -> O.lt z x.

 Definition lt s s' := exists x, EquivBefore x s s' /\
   ((In x s' /\ Below x s) \/
    (In x s /\ exists y, In y s' /\ O.lt x y /\ EmptyBetween x y s')).

#[global]
 Instance : Proper (O.eq==>eq==>eq==>iff) EquivBefore.

#[global]
 Instance : Proper (O.eq==>eq==>iff) Below.

#[global]
 Instance : Proper (O.eq==>eq==>iff) Above.

#[global]
 Instance : Proper (O.eq==>O.eq==>eq==>iff) EmptyBetween.

#[global]
 Instance lt_compat : Proper (eq==>eq==>iff) lt.

#[global]
 Instance lt_strorder : StrictOrder lt.

 Lemma lt_empty_r : forall s s', Empty s' -> ~ lt s s'.

 Definition Add x s s' := forall y, In y s' <-> O.eq x y \/ In y s.

 Lemma lt_empty_l : forall x s1 s2 s2',
  Empty s1 -> Above x s2 -> Add x s2 s2' -> lt s1 s2'.

 Lemma lt_add_lt : forall x1 x2 s1 s1' s2 s2',
   Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' ->
   O.lt x1 x2 -> lt s1' s2'.

  Lemma lt_add_eq : forall x1 x2 s1 s1' s2 s2',
   Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' ->
   O.eq x1 x2 -> lt s1 s2 -> lt s1' s2'.

End MakeSetOrdering.

Module MakeListOrdering (O:OrderedType).
 Module MO:=OrderedTypeFacts O.


 Definition eq s s' := forall x, In x s <-> In x s'.

#[global]
 Instance eq_equiv : Equivalence eq := _.

 Inductive lt_list : t -> t -> Prop :=
    | lt_nil : forall x s, lt_list nil (x :: s)
    | lt_cons_lt : forall x y s s',
        O.lt x y -> lt_list (x :: s) (y :: s')
    | lt_cons_eq : forall x y s s',
        O.eq x y -> lt_list s s' -> lt_list (x :: s) (y :: s').
 #[global]
 Hint Constructors lt_list : core.

 Definition lt := lt_list.
 #[global]
 Hint Unfold lt : core.

 #[global]
 Instance lt_strorder : StrictOrder lt.

#[global]
 Instance lt_compat' :
  Proper (eqlistA O.eq==>eqlistA O.eq==>iff) lt.

 Lemma eq_cons :
  forall l1 l2 x y,
  O.eq x y -> eq l1 l2 -> eq (x :: l1) (y :: l2).
 #[global]
 Hint Resolve eq_cons : core.

 Lemma cons_CompSpec : forall c x1 x2 l1 l2, O.eq x1 x2 ->
  CompSpec eq lt l1 l2 c -> CompSpec eq lt (x1::l1) (x2::l2) c.
 #[global]
 Hint Resolve cons_CompSpec : core.

End MakeListOrdering.