# Library Coq.Init.Nat

Require Import Notations Logic Datatypes.
Local Open Scope nat_scope.

# Peano natural numbers, definitions of operations

This file is meant to be used as a whole module, without importing it, leading to qualified definitions (e.g. Nat.pred)

Definition t := nat.

## Constants

Definition zero := 0.
Definition one := 1.
Definition two := 2.

## Basic operations

Definition succ := S.

Definition pred n :=
match n with
| 0 => n
| S u => u
end.

match n with
| 0 => m
| S p => S (p + m)
end

where "n + m" := (add n m) : nat_scope.

Definition double n := n + n.

Fixpoint mul n m :=
match n with
| 0 => 0
| S p => m + p * m
end

where "n * m" := (mul n m) : nat_scope.

Truncated subtraction: n-m is 0 if n<=m

Fixpoint sub n m :=
match n, m with
| S k, S l => k - l
| _, _ => n
end

where "n - m" := (sub n m) : nat_scope.

## Comparisons

Fixpoint eqb n m : bool :=
match n, m with
| 0, 0 => true
| 0, S _ => false
| S _, 0 => false
| S n', S m' => eqb n' m'
end.

Fixpoint leb n m : bool :=
match n, m with
| 0, _ => true
| _, 0 => false
| S n', S m' => leb n' m'
end.

Definition ltb n m := leb (S n) m.

Infix "=?" := eqb (at level 70) : nat_scope.
Infix "<=?" := leb (at level 70) : nat_scope.
Infix "<?" := ltb (at level 70) : nat_scope.

Fixpoint compare n m : comparison :=
match n, m with
| 0, 0 => Eq
| 0, S _ => Lt
| S _, 0 => Gt
| S n', S m' => compare n' m'
end.

Infix "?=" := compare (at level 70) : nat_scope.

## Minimum, maximum

Fixpoint max n m :=
match n, m with
| 0, _ => m
| S n', 0 => n
| S n', S m' => S (max n' m')
end.

Fixpoint min n m :=
match n, m with
| 0, _ => 0
| S n', 0 => 0
| S n', S m' => S (min n' m')
end.

## Parity tests

Fixpoint even n : bool :=
match n with
| 0 => true
| 1 => false
| S (S n') => even n'
end.

Definition odd n := negb (even n).

## Power

Fixpoint pow n m :=
match m with
| 0 => 1
| S m => n * (n^m)
end

where "n ^ m" := (pow n m) : nat_scope.

## Tail-recursive versions of add and mul

match n with
| O => m
| S n => tail_add n (S m)
end.

tail_addmul r n m is r + n * m.

Fixpoint tail_addmul r n m :=
match n with
| O => r
end.

Definition tail_mul n m := tail_addmul 0 n m.

## Conversion with a decimal representation for printing/parsing

Fixpoint of_uint_acc (d:Decimal.uint)(acc:nat) :=
match d with
| Decimal.Nil => acc
| Decimal.D0 d => of_uint_acc d (tail_mul ten acc)
| Decimal.D1 d => of_uint_acc d (S (tail_mul ten acc))
| Decimal.D2 d => of_uint_acc d (S (S (tail_mul ten acc)))
| Decimal.D3 d => of_uint_acc d (S (S (S (tail_mul ten acc))))
| Decimal.D4 d => of_uint_acc d (S (S (S (S (tail_mul ten acc)))))
| Decimal.D5 d => of_uint_acc d (S (S (S (S (S (tail_mul ten acc))))))
| Decimal.D6 d => of_uint_acc d (S (S (S (S (S (S (tail_mul ten acc)))))))
| Decimal.D7 d => of_uint_acc d (S (S (S (S (S (S (S (tail_mul ten acc))))))))
| Decimal.D8 d => of_uint_acc d (S (S (S (S (S (S (S (S (tail_mul ten acc)))))))))
| Decimal.D9 d => of_uint_acc d (S (S (S (S (S (S (S (S (S (tail_mul ten acc))))))))))
end.

Definition of_uint (d:Decimal.uint) := of_uint_acc d O.

match d with
| Hexadecimal.D0 d => of_hex_uint_acc d (tail_mul sixteen acc)
| Hexadecimal.D1 d => of_hex_uint_acc d (S (tail_mul sixteen acc))
| Hexadecimal.D2 d => of_hex_uint_acc d (S (S (tail_mul sixteen acc)))
| Hexadecimal.D3 d => of_hex_uint_acc d (S (S (S (tail_mul sixteen acc))))
| Hexadecimal.D4 d => of_hex_uint_acc d (S (S (S (S (tail_mul sixteen acc)))))
| Hexadecimal.D5 d => of_hex_uint_acc d (S (S (S (S (S (tail_mul sixteen acc))))))
| Hexadecimal.D6 d => of_hex_uint_acc d (S (S (S (S (S (S (tail_mul sixteen acc)))))))
| Hexadecimal.D7 d => of_hex_uint_acc d (S (S (S (S (S (S (S (tail_mul sixteen acc))))))))
| Hexadecimal.D8 d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (tail_mul sixteen acc)))))))))
| Hexadecimal.D9 d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc))))))))))
| Hexadecimal.Da d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc)))))))))))
| Hexadecimal.Db d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc))))))))))))
| Hexadecimal.Dc d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc)))))))))))))
| Hexadecimal.Dd d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc))))))))))))))
| Hexadecimal.De d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc)))))))))))))))
| Hexadecimal.Df d => of_hex_uint_acc d (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (tail_mul sixteen acc))))))))))))))))
end.

Definition of_hex_uint (d:Hexadecimal.uint) := of_hex_uint_acc d O.

Definition of_num_uint (d:Numeral.uint) :=
match d with
| Numeral.UIntDec d => of_uint d
| Numeral.UIntHex d => of_hex_uint d
end.

Fixpoint to_little_uint n acc :=
match n with
| O => acc
| S n => to_little_uint n (Decimal.Little.succ acc)
end.

Definition to_uint n :=
Decimal.rev (to_little_uint n Decimal.zero).

Fixpoint to_little_hex_uint n acc :=
match n with
| O => acc
| S n => to_little_hex_uint n (Hexadecimal.Little.succ acc)
end.

Definition to_hex_uint n :=

Definition to_num_uint n := Numeral.UIntDec (to_uint n).

Definition to_num_hex_uint n := Numeral.UIntHex (to_hex_uint n).

Definition of_int (d:Decimal.int) : option nat :=
match Decimal.norm d with
| Decimal.Pos u => Some (of_uint u)
| _ => None
end.

Definition of_hex_int (d:Hexadecimal.int) : option nat :=
| Hexadecimal.Pos u => Some (of_hex_uint u)
| _ => None
end.

Definition of_num_int (d:Numeral.int) : option nat :=
match d with
| Numeral.IntDec d => of_int d
| Numeral.IntHex d => of_hex_int d
end.

Definition to_int n := Decimal.Pos (to_uint n).

Definition to_hex_int n := Hexadecimal.Pos (to_hex_uint n).

Definition to_num_int n := Numeral.IntDec (to_int n).

## Euclidean division

This division is linear and tail-recursive. In divmod, y is the predecessor of the actual divisor, and u is y minus the real remainder

Fixpoint divmod x y q u :=
match x with
| 0 => (q,u)
| S x' => match u with
| 0 => divmod x' y (S q) y
| S u' => divmod x' y q u'
end
end.

Definition div x y :=
match y with
| 0 => y
| S y' => fst (divmod x y' 0 y')
end.

Definition modulo x y :=
match y with
| 0 => y
| S y' => y' - snd (divmod x y' 0 y')
end.

Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.

## Greatest common divisor

We use Euclid algorithm, which is normally not structural, but Coq is now clever enough to accept this (behind modulo there is a subtraction, which now preserves being a subterm)

Fixpoint gcd a b :=
match a with
| O => b
| S a' => gcd (b mod (S a')) (S a')
end.

## Square

Definition square n := n * n.

## Square root

The following square root function is linear (and tail-recursive). With Peano representation, we can't do better. For faster algorithm, see Psqrt/Zsqrt/Nsqrt...
We search the square root of n = k + p^2 + (q - r) with q = 2p and 0<=r<=q. We start with p=q=r=0, hence looking for the square root of n = k. Then we progressively decrease k and r. When k = S k' and r=0, it means we can use (S p) as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2. When k reaches 0, we have found the biggest p^2 square contained in n, hence the square root of n is p.

Fixpoint sqrt_iter k p q r :=
match k with
| O => p
| S k' => match r with
| O => sqrt_iter k' (S p) (S (S q)) (S (S q))
| S r' => sqrt_iter k' p q r'
end
end.

Definition sqrt n := sqrt_iter n 0 0 0.

## Log2

This base-2 logarithm is linear and tail-recursive.
In log2_iter, we maintain the logarithm p of the counter q, while r is the distance between q and the next power of 2, more precisely q + S r = 2^(S p) and r<2^p. At each recursive call, q goes up while r goes down. When r is 0, we know that q has almost reached a power of 2, and we increase p at the next call, while resetting r to q.
Graphically (numbers are q, stars are r) :
```                    10
9
8
7   *
6       *
5           ...
4
3   *
2       *
1   *       *
0   *   *       *
```
We stop when k, the global downward counter reaches 0. At that moment, q is the number we're considering (since k+q is invariant), and p its logarithm.

Fixpoint log2_iter k p q r :=
match k with
| O => p
| S k' => match r with
| O => log2_iter k' (S p) (S q) q
| S r' => log2_iter k' p (S q) r'
end
end.

Definition log2 n := log2_iter (pred n) 0 1 0.

Iterator on natural numbers

Definition iter (n:nat) {A} (f:A->A) (x:A) : A :=
nat_rect (fun _ => A) x (fun _ => f) n.

Bitwise operations
We provide here some bitwise operations for unary numbers. Some might be really naive, they are just there for fulfilling the same interface as other for natural representations. As soon as binary representations such as NArith are available, it is clearly better to convert to/from them and use their ops.

Fixpoint div2 n :=
match n with
| 0 => 0
| S 0 => 0
| S (S n') => S (div2 n')
end.

Fixpoint testbit a n : bool :=
match n with
| 0 => odd a
| S n => testbit (div2 a) n
end.

Definition shiftl a := nat_rect _ a (fun _ => double).
Definition shiftr a := nat_rect _ a (fun _ => div2).

Fixpoint bitwise (op:bool->bool->bool) n a b :=
match n with
| 0 => 0
| S n' =>
(if op (odd a) (odd b) then 1 else 0) +
2*(bitwise op n' (div2 a) (div2 b))
end.

Definition land a b := bitwise andb a a b.
Definition lor a b := bitwise orb (max a b) a b.
Definition ldiff a b := bitwise (fun b b' => andb b (negb b')) a a b.
Definition lxor a b := bitwise xorb (max a b) a b.